Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(3-Mesityl-3-methylcyclobutyl)-2-(pyrrolidin-1-yl)-ethan-1-one

In the title molecule, $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}$, the cyclobutane ring is puckered, with a dihedral angle of 19.8 (3) ${ }^{\circ}$ between the two planes. The pyrrolidine ring adopts an envelope conformation. There are intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

3-Substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and antidepressant activities (Dehmlow \& Schmidt, 1990), and liquid crystal properties (Coghi et al., 1976). A recent communication showed that compounds incorporating 1,3,4-trisubstituted pyrrolidine ring scaffolds were potent CCR5 antagonists (Lynch et al., 2002). The pyrrolidine ring is a structure very often encountered in the alkaloid field (Martin \& Brossi, 1987). Furthermore, numerous chiral non-racemic substituted pyrrolidines and pyrrolidones are used as intermediates, chiral ligands or auxiliaries in asymmetric synthesis (Huryn et al., 1991). The development of new methods for the preparation of enantiomerically pure, highly substituted pyrrolidines and pyrrolidones is then of increasing interest. Taking into account the importance of cyclobutane and pyrrolidine, we have undertaken an X-ray diffraction study of the title compound, (I).

Fig. 1 shows the molecular structure and conformation of (I), with the atomic numbering scheme. The four-atom bridge ($\mathrm{N} 1 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 5$) linking the cyclobutane and pyrrolidine rings is not planar, the $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$ torsion angle being $-54.1(4)^{\circ}$, which corresponds to the $(-)$ synclinal configuration. Although close to planar, the cyclobutane ring is more puckered than that in a related compound; the C8/C5/C6 plane forms a dihedral angle of 19.8 (3) ${ }^{\circ}$ with the $\mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$ plane in (I) $\left[11.55\right.$ (3) ${ }^{\circ}$ in the related compound; Özdemir et al., 2004]. However, the bond lengths in the cyclobutane ring are similar to those in the related compound. In (I), the pyrrolidine ring is close to an envelope conformation, with atom N1 deviating by 0.257 (4) A from the C1-C4 plane, and puckering parameters (Cremer \& Pople, 1975) $Q_{2}=$ 0.408 (5) \AA and $\varphi_{2}=354.1$ (7) ${ }^{\circ}$.

The crystal structure does not exhibit intramolecular or $\pi-\pi$ interactions. There are, however, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$

Received 27 July 2004
Accepted 3 August 2004 Online 13 August 2004

[^0]Muharrem Dinçer, ${ }^{\text {a }}$ * Namık Özdemir, ${ }^{\text {a }}$ Alaaddin Çukurovalı, ${ }^{\text {b }}$ Ibrahim Yılmaz ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$
${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Frrat University, Arts and Sciences Faculty, Department of Chemistry, 23119Elazıǧ, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.068$
$w R$ factor $=0.194$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
intermolecular interactions (Table 2). Atom O 1 and the centroid, Cg 3 , of the $\mathrm{C} 12-\mathrm{C} 17$ benzene ring act as a double acceptor for $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, respectively.

Experimental

A mixture of 1-phenyl-1-mesityl-3-(2-chloro-1-oxoethyl)cyclobutane $(5.29 \mathrm{~g}, 20 \mathrm{mmol})$ and pyrrolidine $(2.874 \mathrm{~g}, 40 \mathrm{mmol})$ in dry benzene (50 ml) was refluxed with continuous stirring. The course of the reaction was monitored by IR spectroscopy. The product was formed after about half an hour. After cooling to room temperature and filtration of the pyrrolidine salt, benzene was removed under reduced pressure through a rotary evaporator. The oily product was treated with diethyl ether and dried over magnesium sulfate. Shiny crystals of (I) suitable for X-ray analysis were obtained from a diethyl ether solution by deep freezing at 253 K (yield 78%, m.p. 412 K). IR (KBr): $1724 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, p.p.m.): $1.59\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ on cyclobutane), 1.85 ($s, 3 \mathrm{H}, p-\mathrm{CH}_{3}$ on mesitylene), 2.24-2.74 (br, 10H, $o-\mathrm{CH}_{3}$ on mesitylene plus $-\mathrm{CH}_{2}$ - on pyrollidine), 2.78-3.04 ($\mathrm{br}, 8 \mathrm{H}$, $-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}-$ plus $-\mathrm{CH}_{2}-$ in cyclobutane $), 3.31(q, j=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $>\mathrm{CH}-), 3.58\left(s, 2 \mathrm{H},-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{N}\right), 6.77(s, 2 \mathrm{H}$, aromatics on mesitylene).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}$
$M_{r}=299.44$
Tetragonal, $P 4_{2} / n$
$a=21.2110$ (9) \AA
$c=7.8940$ (4) \AA
$V=3551.6$ (3) \AA^{3}
$Z=8$
$D_{x}=1.120 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer

ω scans

Absorption correction: none
23972 measured reflections
3390 independent reflections
1642 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.194$
$S=1.01$
3390 reflections
202 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 18614 reflections
$\theta=1.4-26.0^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.42 \times 0.29 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.068 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-26 \rightarrow 26 \\
& k=-26 \rightarrow 26 \\
& l=-9 \rightarrow 8
\end{aligned}
$$

[^1]Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C10	$1.186(4)$	C7-C12	$1.525(4)$
N1-C1	$1.401(5)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.534(4)$
N1-C9	$1.450(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.554(4)$
N1-C4	$1.561(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.572(5)$
C5-C10	$1.498(5)$	$\mathrm{C} 13-\mathrm{C} 18$	$1.508(4)$
C5-C6	$1.527(5)$	$\mathrm{C} 15-\mathrm{C} 19$	$1.521(4)$
C5-C8	$1.540(4)$	$\mathrm{C} 17-\mathrm{C} 20$	$1.521(4)$
C6-C7	$1.565(4)$		
			$90.4(3)$
C1-N1-C9	$114.5(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$111.2(2)$
C1-N1-C4	$105.5(3)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 11$	$111.9(3)$
C9-N1-C4	$108.3(3)$	$\mathrm{C} 11-\mathrm{C} 7-\mathrm{C} 8$	$111.3(2)$
N1-C1-C2	$104.7(3)$	$\mathrm{C} 11-\mathrm{C} 7-\mathrm{C} 6$	$86.9(2)$
C1-C2-C3	$106.1(4)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$90.3(3)$
C4-C3-C2	$106.7(3)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 7$	$122.9(3)$
C3-C4-N1	$98.0(3)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 5$	$119.0(3)$
C6-C5-C8	$88.8(2)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 9$	
N1-C9-C10-C5	$-54.1(4)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.
Cg 3 is the centroid of the $\mathrm{C} 12-\mathrm{C} 17$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6B $\cdots \mathrm{O}^{\text {i }}$	0.97	2.65	3.594 (4)	164
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1^{\text {i }}$	0.97	2.69	3.450 (5)	136
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{Cg} 3{ }^{\text {ii }}$	0.97	3.05	3.994 (4)	165
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Cg} 3^{\text {iii }}$	0.96	2.96	3.818 (3)	149

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x,-y, 2-z$; (iii) $-\frac{1}{2}-y, x, \frac{1}{2}-z$.
H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ $\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl]. In the final difference Fourier map, the maximum residual density was located $1.27 \AA$ from atom $\mathrm{H} 1 A$, and the minimum was $0.26 \AA$ from H 18 C .

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Coghi, L., Lanfredi, A. M. M. \& Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808-1810.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dehmlow, E. V. \& Schmidt, S. (1990). Liebigs Ann. Chem. p. 411.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Huryn, D. M., Trost, B. M. \& Fleming, I. (1991). Editors. Comprehensive Organic Synthesis, Vol. 1, pp. 64-74. Oxford: Pergamon.
Lynch, C. L., Gentry, A. L., Hale, J. J., Mills, S. G., MacCoss, M., Malkowitz, L., Springer, M. S., Gould, S. L., DeMartino, J. A., Siciliano, S. J., Cascieri, M. A., Doss, G., Carella, A., Carver, G., Holmes, K., Schleif, W. A., Danzeisen, R., Hazuda, D., Kessler, J., Lineberger, J., Miller, M. \& Emini, E. A. (2002). Bioorg. Med. Chem. Lett. 12, 677-679.

Martin, S. F. \& Brossi, A. (1987). Editors. The Alkaloids, Vol. 30, ch. 3. Orlando: Academic Press.
Özdemir, N., Dinçer, M., Yılmaz, İ. \& Çukurovalı, A. (2004). Acta Cryst. E60, o145-o147.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

[^1]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0947 P)^{2}\right]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{\circ} \AA^{-3}$
 $\Delta \rho_{\min }=-0.24 \mathrm{e} \mathrm{A}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.0042 (12)

